Arrays January 13 ,2026

Subarray with Given Sum

Problem Statement

Given an array of integers and a target sum S, find a contiguous subarray whose elements add up to S.

You need to:

  • Print the starting and ending indices
    OR
  • Print the subarray itself (as per problem requirement)

If no such subarray exists, print "No subarray found".

Key Difference from Two Sum

Two SumSubarray Sum
Elements can be anywhereElements must be continuous
Uses hashing directlyUses sliding window / prefix sum
Pair of numbersRange of numbers

Example 1 (Positive Numbers)

Input

arr = [1, 4, 20, 3, 10, 5]
S = 33

Output

Subarray found from index 2 to 4

Explanation

20 + 3 + 10 = 33

Example 2

Input

arr = [1, 2, 3, 7, 5]
S = 12

Output

Subarray found from index 1 to 3

Important Observation

The approach depends on array type:

  1. Only Positive Numbers → Sliding Window
  2. Contains Negative Numbers → Prefix Sum + Hash Map

Approach 1: Sliding Window (For Positive Numbers Only)

Core Idea

  • Expand window by moving end
  • If sum becomes greater than target, shrink window from start
  • Stop when sum equals target

Algorithm

  1. Initialize:
    • start = 0
    • currentSum = 0
  2. Traverse array using end
  3. Add arr[end] to currentSum
  4. While currentSum > S, subtract arr[start] and increment start
  5. If currentSum == S, print indices

Time and Space Complexity

  • Time Complexity: O(n)
  • Space Complexity: O(1)

Below are the Subarray with Given Sum solutions, given one by one, clearly separated.

C Implementation

#include<stdio.h>

int main() {
    int arr[] = {1, 4, 20, 3, 10, 5};
    int n = 6;
    int S = 33;

    int start = 0, currSum = 0;

    for (int end = 0; end < n; end++) {
        currSum += arr[end];

        while (currSum > S && start <= end) {
            currSum -= arr[start];
            start++;
        }

        if (currSum == S) {
            printf("Subarray found from index %d to %d", start, end);
            return 0;
        }
    }

    printf("No subarray found");
    return 0;
}

Output

Subarray found from index 2 to 4

C++ Implementation

#include<iostream>
using namespace std;

int main() {
    int arr[] = {1, 4, 20, 3, 10, 5};
    int n = 6, S = 33;

    int start = 0, currSum = 0;

    for (int end = 0; end < n; end++) {
        currSum += arr[end];

        while (currSum > S && start <= end) {
            currSum -= arr[start++];
        }

        if (currSum == S) {
            cout << "Subarray found from index " << start << " to " << end;
            return 0;
        }
    }

    cout << "No subarray found";
    return 0;
}

Output

Subarray found from index 2 to 4

Java Implementation

public class SubarraySlidingWindow {
    public static void main(String[] args) {
        int[] arr = {1, 4, 20, 3, 10, 5};
        int S = 33;

        int start = 0, currSum = 0;

        for (int end = 0; end < arr.length; end++) {
            currSum += arr[end];

            while (currSum > S && start <= end) {
                currSum -= arr[start++];
            }

            if (currSum == S) {
                System.out.println("Subarray found from index " + start + " to " + end);
                return;
            }
        }

        System.out.println("No subarray found");
    }
}

Python Implementation

arr = [1, 4, 20, 3, 10, 5]
S = 33

start = 0
curr_sum = 0

for end in range(len(arr)):
    curr_sum += arr[end]

    while curr_sum > S and start <= end:
        curr_sum -= arr[start]
        start += 1

    if curr_sum == S:
        print("Subarray found from index", start, "to", end)
        break

JavaScript Implementation

let arr = [1, 4, 20, 3, 10, 5];
let S = 33;

let start = 0, currSum = 0;

for (let end = 0; end < arr.length; end++) {
    currSum += arr[end];

    while (currSum > S && start <= end) {
        currSum -= arr[start++];
    }

    if (currSum === S) {
        console.log("Subarray found from index", start, "to", end);
        break;
    }
}
.

Dry Run (Sliding Window)

arr = [1, 4, 20, 3, 10, 5], S = 33

end=0 → sum=1
end=1 → sum=5
end=2 → sum=25
end=3 → sum=28
end=4 → sum=38 (greater than 33)
Remove arr[0]=1 → sum=37
Remove arr[1]=4 → sum=33 → FOUND

Approach 2: Prefix Sum + Hash Map (Handles Negative Numbers)

When to Use

  • Array contains negative numbers
  • Sliding window fails because sum may decrease unexpectedly

Core Idea

If:

prefixSum[j] - prefixSum[i] = S

Then:

prefixSum[i] = prefixSum[j] - S

Store prefix sums in a hash map.

Algorithm

  1. Initialize:
    • sum = 0
    • Hash map to store prefix sum and index
  2. Traverse array:
    • Add current element to sum
  3. If sum == S, subarray found from 0 to i
  4. If (sum - S) exists in map:
    • Subarray exists from map[sum-S]+1 to i
  5. Store sum in map if not already present

Time and Space Complexity

  • Time Complexity: O(n)
  • Space Complexity: O(n)

C++ Implementation

#include<iostream>
#include<unordered_map>
using namespace std;

int main() {
    int arr[] = {10, 2, -2, -20, 10};
    int n = 5, S = -10;

    unordered_map<int,int> mp;
    int sum = 0;

    for (int i = 0; i < n; i++) {
        sum += arr[i];

        if (sum == S) {
            cout << "Subarray found from index 0 to " << i;
            return 0;
        }

        if (mp.find(sum - S) != mp.end()) {
            cout << "Subarray found from index "
                 << mp[sum - S] + 1 << " to " << i;
            return 0;
        }

        mp[sum] = i;
    }

    cout << "No subarray found";
    return 0;
}

Output

Subarray found from index 0 to 3

Java Implementation

import java.util.*;

public class SubarrayPrefixSum {
    public static void main(String[] args) {
        int[] arr = {10, 2, -2, -20, 10};
        int S = -10;

        Map<Integer, Integer> map = new HashMap<>();
        int sum = 0;

        for (int i = 0; i < arr.length; i++) {
            sum += arr[i];

            if (sum == S) {
                System.out.println("Subarray found from index 0 to " + i);
                return;
            }

            if (map.containsKey(sum - S)) {
                System.out.println("Subarray found from index " +
                        (map.get(sum - S) + 1) + " to " + i);
                return;
            }

            map.put(sum, i);
        }

        System.out.println("No subarray found");
    }
}

Python Implementation

arr = [10, 2, -2, -20, 10]
S = -10

mp = {}
sum_val = 0

for i, num in enumerate(arr):
    sum_val += num

    if sum_val == S:
        print("Subarray found from index 0 to", i)
        break

    if (sum_val - S) in mp:
        print("Subarray found from index", mp[sum_val - S] + 1, "to", i)
        break

    mp[sum_val] = i

JavaScript Implementation

let arr = [10, 2, -2, -20, 10];
let S = -10;

let map = new Map();
let sum = 0;

for (let i = 0; i < arr.length; i++) {
    sum += arr[i];

    if (sum === S) {
        console.log("Subarray found from index 0 to", i);
        break;
    }

    if (map.has(sum - S)) {
        console.log(
            "Subarray found from index",
            map.get(sum - S) + 1,
            "to",
            i
        );
        break;
    }

    map.set(sum, i);
}

 

Summary

CaseBest Approach
Only positive numbersSliding Window
Negative numbers allowedPrefix Sum + Hash Map

Key Takeaways

  • Subarray means continuous
  • Sliding window is fastest but limited
  • Prefix sum handles all cases
  • Common interview problem after Two Sum & Kadane

Next Problems in the Series

Longest Subarray with Sum K

Sanjiv
0

You must logged in to post comments.

Get In Touch

Kurki bazar Uttar Pradesh

+91-8808946970

techiefreak87@gmail.com